Cortical responses to optic flow and motion contrast across patterns and speeds

نویسندگان

  • Jeremy D. Fesi
  • Amanda L. Thomas
  • Rick O. Gilmore
چکیده

Motion provides animals with fast and robust cues for navigation and object detection. In the first case, stereotyped patterns of optic flow inform a moving observer about the direction and speed of its own movement. In the case of object detection, regional differences in motion allow for the segmentation of figures from their background, even in the absence of color or shading cues. Previous research has investigated human electrophysiological responses to global motion across speeds, but only focused upon one type of optic flow pattern. Here, we compared steady-state visual evoked potential (SSVEP) responses across patterns and speeds, both for optic flow and for motion-defined figure patterns, to assess the extent to which the processes are pattern-general or pattern-specific. For optic flow, pattern and speed effects on response amplitudes varied substantially across channels, suggesting pattern-specific processing at slow speeds and pattern-general activity at fast speeds. Responses for coherence- and direction-defined figures were comparatively more uniform, with similar response profiles and spatial distributions. Self- and object-motion patterns activate some of the same circuits, but these data suggest differential sensitivity: not only across the two classes of motion, but also across the patterns within each class, and across speeds. Thus, the results demonstrate that cortical processing of global motion is complex and activates a distributed network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of cortical responses to optic flow.

Humans discriminate approaching objects from receding ones shortly after birth, and optic flow associated with self-motion may activate distinctive brain networks, including the human MT+ complex. We sought evidence for evoked brain activity that distinguished radial motion from other optic flow patterns, such as translation or rotation by recording steady-state visual evoked potentials (ssVEPs...

متن کامل

Development of radial optic flow pattern sensitivity at different speeds

The development of sensitivity to radial optic flow discrimination was investigated by measuring motion coherence thresholds (MCTs) in school-aged children at two speeds. A total of 119 child observers aged 6-16years and 24 young adult observers (23.66+/-2.74years) participated. In a 2AFC task observers identified the direction of motion of a 5° radial (expanding vs. contracting) optic flow pat...

متن کامل

Medial superior temporal area neurons respond to speed patterns in optic flow.

The speed of visual motion in optic flow fields can provide important cues about self-movement. We have studied the speed sensitivities of 131 neurons in the dorsal region of the medial superior temporal area (MSTd) that responded to either radial or circular optic flow stimuli. The responses of more than two-thirds of these neurons were strongly modulated by changes in the mean speed of motion...

متن کامل

Cortical area MSTd combines visual cues to represent 3-D self-movement.

As arboreal primates move through the jungle, they are immersed in visual motion that they must distinguish from the movement of predators and prey. We recorded dorsal medial superior temporal (MSTd) cortical neuronal responses to visual motion stimuli simulating self-movement and object motion. MSTd neurons encode the heading of simulated self-movement in three-dimensional (3-D) space. 3-D hea...

متن کامل

Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed

Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in ear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2014